LA GEOMETRÍA CARTESIANA.
Pero es sin duda la aparición de la Geometría Cartesiana lo que marca la Geometría en la Edad Moderna. Descartes propone un nuevo método de resolver problemas geométricos, y por extensión, de investigar en Geometría.
El nuevo método se basa en la siguiente construcción: en un plano se trazan dos rectas perpendiculares (ejes) -que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical-, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado (x,y), siendo x la distancia a uno de los ejes (por convenio será la distancia al eje vertical) e y la distancia al otro eje (al horizontal).
En la coordenada x, el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha del eje vertical (Eje de Ordenadas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada y, el signo positivo (también se suele omitir) indica que la distancia se toma hacia arriba del eje horizontal (Eje de Abscisas), tomándose hacia abajo si el signo es negativo (tampoco se omite nunca en este caso). A la coordenada x se la suele denominar abscisa del punto, mientras que a la y se la denomina ordenada del punto.
Ejes Coordenados
Existe una cierta controversia (aun hoy) sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez como "Geometría Analítica", apéndice al "Discurso del Método", de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinar ciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuviera acceso a su obra.
Lo novedoso de la Geometría Analítica (como también se conoce a este método) es que permite representar figuras geométricas mediante fórmulas del tipo f(x,y)=0, donde f representa una función. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (v.g.: 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (v.g.: la circunferencia x2 + y2 = 4, la hipérbola xy = 1 ).
Esto convertía toda la Geometría griega en el estudio de las relaciones que existen entre polinomios de grados 1 y 2. Desde un punto de vista formal (aunque ellos aun lo sabían), los geómetras de esta época han encontrado una relación fundamental entre la estructura lógica que usaban los geómetras griegos (el plano, la regla, el compás...) y la estructura algebraica del ideal formado por los polinomios de grados 0, 1 y 2 del Anillo de polinomios R[x,y], resultando que ambas estructuras son equivalentes. Este hecho fundamental (no visto con nitidez hasta el desarrollo del Álgebra Moderna y de la Lógica Matemática entre finales del siglo XIX y principios del siglo XX) resulta fundamental para entender por qué la Geometría de los griegos puede desprenderse de sus axiomas y estudiarse directamente usando la axiomática de Zermelo-Fraenkel, como el resto de la Matemática.
Esto convertía toda la Geometría griega en el estudio de las relaciones que existen entre polinomios de grados 1 y 2. Desde un punto de vista formal (aunque ellos aun lo sabían), los geómetras de esta época han encontrado una relación fundamental entre la estructura lógica que usaban los geómetras griegos (el plano, la regla, el compás...) y la estructura algebraica del ideal formado por los polinomios de grados 0, 1 y 2 del Anillo de polinomios R[x,y], resultando que ambas estructuras son equivalentes. Este hecho fundamental (no visto con nitidez hasta el desarrollo del Álgebra Moderna y de la Lógica Matemática entre finales del siglo XIX y principios del siglo XX) resulta fundamental para entender por qué la Geometría de los griegos puede desprenderse de sus axiomas y estudiarse directamente usando la axiomática de Zermelo-Fraenkel, como el resto de la Matemática.
El método original de Descartes no es exactamente el que se acaba de explicar. Descartes utiliza solamente el eje de abscisas, calculando el valor de la segunda componente del punto (x,y) mediante la ecuación de la curva, dándole valores a la magnitud x. Por otro lado, Descartes sólo considera valores positivos de las cantidades x e y, dado que en la época aun resultaban "sospechosos" los números negativos. Como consecuencia, en sus estudios existen ciertas anomalías y aparecen curvas sesgadas. Con el tiempo se aceptaron las modificaciones que muestran el método tal y como lo conocemos hoy en día.
LOS NUEVOS MÉTODOS.
AGOTAMIENTO DEL MÉTODO SINTÉTICO
La aparición de la Geometría Analítica trae consigo una nueva forma de entender la Geometría. El nuevo método, algebraico, sustituye al antiguo, el sintético, consistente en establecer unos axiomas y unas definiciones y deducir de ellos los teoremas. El método sintético está a estas alturas casi agotado (aunque aun dará algunos resultados interesantes, como la característica de Euler, la naturaleza de estos resultados no es ya tanto geométrica como topológica, y los resultados realmente importantes que se hagan en adelante en el campo de la Geometría ya vendrán de la mano de métodos algebraicos o diferenciales), da paso al Método Algebraico: estudio de los objetos geométricos como representaciones en el espacio de ciertas ecuaciones polinómicas, o dicho de otro modo, del conjunto de raíces de polinomios. El método sintético sólo volverá a abordarse cuando aparezcan las geometrías no euclídeas, y definitivamente deja de ser un instrumento de investigación geométrica a principios del siglo XX, quedando relegado a un conjunto de instrumentos y herramientas para la resolución de problemas, pero ya como una disciplina cerrada.
LOS LÍMITES DEL MÉTODO ALGEBRAICO.
El método algebraico se ve posibilitado por un avance en Álgebra hecho durante el siglo XVI, la resolución de las ecuaciones de grado 3º y 4º. Esto permite generalizar la Geometría, al estudiar curvas que no son dadas por polinomios de segundo grado, y que no pueden construirse con regla y compás -además de las cónicas, excluyendo a la circunferencia, claro-. Pero este método, que terminará constituyendo una disciplina propia, la Geometría Algebraica, tardará aun mucho -siglo XX- en salir de unas pocas nociones iniciales, prácticamente inalteradas desde Descartes, Fermat y Newton. La razón será la imposibilidad de resolver por radicales la ecuación de quinto grado, hecho no descubierto hasta el siglo XIX, y el desarrollo de la Teoría de Anillos y del Álgebra Conmutativa.
EL CÁLCULO INFINITESIMAL
El método algebraico tiene otra generalización natural, que es la de considerar una curva no solo como una ecuación polinómica, sino como una ecuación f(x,y)=0 en la que el polinomio es ahora sustituido por una función cualquiera f. La generalización de todo esto desde el plano (2 coordenadas) al estereoespacio (3 coordenadas) se hace de forma natural añadiendo un tercer eje perpendicular (eje z) a los dos ya considerados, y las funciones tomarán la forma f(x,y,z).
Ya Isaac Barrow descubre gracias a la Geometría Analítica la relación entre la tangente a una curva y el área que encierra entre dos puntos y los ejes coordenados en su famosa Regla de Barrow, antes incluso de que Newton y Leibnitz dieran cada uno su exposición del Cálculo Infinitesimal. La relación entre el Análisis Matemático y la Geometría es así estrechísima desde incluso los orígenes de aquél. Las ideas geométricas no sólo fueron la base de los instrumentos iniciales del Cálculo Infinitesimal, sino que fueron en gran medida su inspiración. Por eso resulta natural que en un primer momento, Descartes, Newton o los Bernoulli no distinguieran entre los conceptos de curva y de función de una variable (o si se quiere, de curva y los ceros de una función de dos variables). Fue Euler el primero en empezar a intuir la diferencia, y el primero también en ampliar este tipo de estudios a las superficies (como función de dos variables o como el conjunto de los ceros de una función de tres variables). El trabajo de Monge continúa por esta línea.
En adelante, y hasta la aparición de Gauss, la Geometría queda supeditada a sus aplicaciones en Mecánica y otras ramas de la Física por medio de la resolución de Ecuaciones Diferenciales. Se estudia en especial la interpretación geométrica de las ecuaciones diferenciales (tanto de la solución en sí como problemas asociados a ellas, como puede ser el de las curvas ortogonales). En esta época aparece el que será el caballo de batalla de la Geometría Diferencial: el Teorema de la Función Implícita.
Fue Huygens el primero en estudiar la curvatura de una curva plana, aunque parece que fue Clairaut el que usa con maestría y fija el concepto.
No hay comentarios:
Publicar un comentario