Nikolái Ivánovich Lobachevski (en caracteres cirílicos: Никола́й Ива́нович Лобаче́вский) (1 de diciembre de 1792 - 24 de febrero de1856) fue un matemático ruso del siglo XIX.
Entre sus principales logros se encuentra la demostración de varias conjeturas relacionadas con el cálculo tensorial aplicados a vectoresen el espacio de Hilbert.
Fue uno de los primeros matemáticos que aplicó un tratamiento crítico a los postulados fundamentales de la geometría euclidiana.
Nació en Nizhni Nóvgorod y estudió en la Universidad de Kazán. Enseñó en Kazán desde 1812 hasta 1846, y llegó a ser profesor de matemáticas en 1823.
Con independencia del húngaro János Bolyai y del alemán Carl Friedrich Gauss, Lobachevski descubrió un sistema de geometría no euclidiana. Antes de Lobachesvski, los matemáticos intentaban deducir el quinto postulado de Euclides a partir de los otros axiomas; sin embargo, Lobachevsky se dedicó a desarrollar una geometría en la cual el quinto postulado puede no ser cierto o, mejor dicho, no ser válido. Para esto, entre otras cuestiones propuso un sistema geométrico basado en la hipótesis del ángulo agudo, según la cual, en unplano, por un punto fijo pasan al menos 2 paralelas a una recta -en realidad tal solución da noción de la existencia de triángulos curvos.
Murió en Kazán en 1856.
Nikolai Lobachevsky | |
---|---|
Nikolai Lobachevsky | |
Nacimiento | 1 de diciembre de 1792 Nizhny Novgorod, Rusia |
Fallecimiento | 24 de febrero de 1856 (63 años) |
Nacionalidad | Rusia |
Campo | geometría |
Alma máter | Universidad de Kazán |
No hay comentarios:
Publicar un comentario