Augustin Louis Cauchy


Augustin Louis Cauchy (París21 de agosto de 1789Sceaux23 de mayo de 1857matemático francés.
Cauchy fue pionero en el análisis matemático y la teoría de grupos de permutaciones, contribuyendo de manera medular a su desarrollo. También investigó la convergencia y la divergencia de las series infinitasecuaciones diferencialesdeterminantesprobabilidad y física matemática.
Cauchy empezó a educarse tempranamente con su padre Louis François Cauchy (1760-1848) quien ocupó varios puestos públicos menores y era amigo de Joseph-Louis de Lagrange y Pierre Simon Laplace.
Estudió en École Polytechnique de París, obteniendo su título en ingeniería. Por su rendimiento académico brillante, fue contratado como ingeniero militar en 1812 para contribuir al gran plan de Napoleón para transformar el puerto de Cherbourg en el más importante de Francia e Inglaterra. Sin embargo, su mala salud le obligó a abandonar este proyecto. Comenzó a dedicarse a la investigación científica intensiva, y a la publicación de varias obras importantes en rápida sucesión. La principal conclusión de este período fue la demostración del teorema del número poligonal de Fermat, al que se habían dedicado sin éxito ilustres matemáticos contemporáneos como Gauss. Fue nombrado profesor de la mecánica en la École Polytechnique en 1816. Fue promovido a miembro de la Academia Francesa de las Ciencias, en lugar de Gaspard Monge, quien fue expulsado por razones políticas.
En 1830, se vio en la necesidad de seguir siendo fiel al juramento ante el rey Carlos X por lo que tuvo que abandonar todos sus cargos académicos y marchar al exilio. Desde París se trasladó a Turín, donde dio clases en la universidad, y luego se trasladó a Praga, a petición de Carlos X, como tutor del Conde de Chambord. Regresó a París en 1838, pero no pudo encontrar un lugar en la Sorbona, hasta 1848, cuando fue nombrado profesor de Astronomía.
En 1814 publicó la memoria de la integral definida que llegó a ser la base de la teoría de las funciones complejas. Gracias a Cauchy, elanálisis infinitesimal adquiere bases sólidas.
Cauchy precisa los conceptos de función, de límite y de continuidad en la forma actual o casi actual, tomando el concepto de límite como punto de partida del análisis y eliminando de la idea de función toda referencia a una expresión formal, algebraica o no, para fundarla sobre la noción de correspondencia. Los conceptos aritméticos otorgan ahora rigor a los fundamentos del análisis, hasta entonces apoyados en una intuición geométrica que quedará eliminada, en especial cuando más tarde sufre un rudo golpe al demostrarse que hay funciones continuas sin derivadas, es decir: curvas sin tangente. Cauchy consideraba que las funciones en 3 dimensiones que eran derivables eran continuas sin embargo se descubrió que era necesaria una condición de diferenciabilidad para asegurar la continuidad. Pesa sobre el hecho de que estando en la Universidad se adjudicaba teoremas que pertenecían a los alumnos, denominando los teoremas en conjunto con los alumnos que irremediablemente debían de presentar sus trabajos ante Cauchy.[cita requerida]
En 1832 fue nombrado miembro de la Royal Society y en 1845 de la Royal Society of Edinburgh.
Existe un cráter lunar con su nombre (Cauchy). 
Augustin Louis Cauchy.


No hay comentarios:

Publicar un comentario